Some finite semigroups and semirings without finite identity basis

Mikhail Volkov
(with Yuzhu Chen, Xun Hu, Yanfeng Luo, and Miaomiao Ren)

Ural Federal University, Ekaterinburg, Russia
An algebraic structure is **finitely based** if there is a finite basis for its identities, otherwise it is **non-finitely based**.
An algebraic structure is **finitely based** if there is a finite basis for its identities, otherwise it is **non-finitely based**.

The Finite Basis Problem

Given an interesting algebraic structure M, determine whether or not the identities of M admit a finite basis.
An algebraic structure is finitely based if there is a finite basis for its identities, otherwise it is non-finitely based.

The Finite Basis Problem

Given an interesting algebraic structure M, determine whether or not the identities of M admit a finite basis.

The Finite Basis Problem (FBP) is natural by itself, but it has also revealed a number of interesting and unexpected relations to many issues of theoretical and practical importance ranging from feasible algorithms for membership in certain classes of formal languages to classical number-theoretic conjectures such as the Twin Prime, Goldbach, existence of odd perfect numbers and the infinitude of even perfect numbers.
An algebraic structure is **finitely based** if there is a finite basis for its identities, otherwise it is **non-finitely based**.

The Finite Basis Problem

Given an interesting algebraic structure M, determine whether or not the identities of M admit a finite basis.

The Finite Basis Problem (FBP) is natural by itself, but it has also revealed a number of interesting and unexpected relations to many issues of theoretical and practical importance ranging from feasible algorithms for membership in certain classes of formal languages to classical number-theoretic conjectures such as the Twin Prime, Goldbach, existence of odd perfect numbers and the infinitude of even perfect numbers. (See P. Perkins, Finite axiomatizability for equational theories of computable groupoids, *J. Symbolic Logic* 54, 1018–1022 (1989): each of these conjectures is equivalent to the FBP for a structure of the form (S, \cdot).)
The algorithmic version of the FBP for the class of finite algebras is known as Tarski’s problem.

For general algebras (and even for groupoids) the corresponding problem is shown by Ralph McKenzie to be undecidable. For semigroups it is still open and attracts lots of attention. See my survey “The finite basis problem for finite semigroups”, Sci. Math. Jap., Vol. 53, 171–199, 2001; its (occasionally) updated version is available through my webpage: http://csseminar.kadm.usu.ru/volkov

February 10th, 2017
The algorithmic version of the FBP for the class of finite algebras is known as **Tarski’s problem**.

Tarski’s Problem

Is there an algorithm that when given an effective description of a finite algebra A decides whether A is finitely based or not?

For general algebras (and even for groupoids) the corresponding problem is shown by Ralph McKenzie to be undecidable. For semigroups it is still open and attracts lots of attention. See my survey “The finite basis problem for finite semigroups”, *Sci. Math. Jap.*, Vol. 53, 171–199, 2001; its (occasionally) updated version is available through my webpage: http://csseminar.kadm.usu.ru/volkov
The FBP for Finite Algebras

The algorithmic version of the FBP for the class of finite algebras is known as Tarski’s problem.

Tarski’s Problem

Is there an algorithm that when given an effective description of a finite algebra A decides whether A is finitely based or not?

For general algebras (and even for groupoids) the corresponding problem is shown by Ralph McKenzie to be undecidable. For semigroups it is still open and attracts lots of attention. See my survey “The finite basis problem for finite semigroups”, *Sci. Math. Jap.*, Vol. 53, 171–199, 2001; its (occasionally) updated version is available through my webpage: http://csseminar.kadm.usu.ru/volkov
The algorithmic version of the FBP for the class of finite algebras is known as **Tarski’s problem**.

Tarski’s Problem

Is there an algorithm that when given an effective description of a finite algebra A decides whether A is finitely based or not?

For general algebras (and even for groupoids) the corresponding problem is shown by Ralph McKenzie to be undecidable. For semigroups it is still open and attracts lots of attention.

http://csseminar.kadm.usu.ru/volkov
The algorithmic version of the FBP for the class of finite algebras is known as **Tarski’s problem**.

Tarski’s Problem

Is there an algorithm that when given an effective description of a finite algebra A decides whether A is finitely based or not?

For general algebras (and even for groupoids) the corresponding problem is shown by Ralph McKenzie to be undecidable. For semigroups it is still open and attracts lots of attention. See my survey “The finite basis problem for finite semigroups”, *Sci. Math. Jap.*, Vol. 53, 171–199, 2001; its (occasionally) updated version is available through my webpage: http://csseminar.kadm.usu.ru/volkov
The algorithmic version of the FBP for the class of finite algebras is known as Tarski’s problem.

Tarski’s Problem

Is there an algorithm that when given an effective description of a finite algebra A decides whether A is finitely based or not?

For general algebras (and even for groupoids) the corresponding problem is shown by Ralph McKenzie to be undecidable. For semigroups it is still open and attracts lots of attention. See my survey “The finite basis problem for finite semigroups”, *Sci. Math. Jap.*, Vol. 53, 171–199, 2001; its (occasionally) updated version is available through my webpage: http://csseminar.kadm.usu.ru/volkov
It is known that the property of being finitely based is extremely fragile: the class of finite finitely based semigroup is not closed under any of standard class operators.

For instance, the direct product of two finitely based finite semigroups can be non-finitely based. An old example: Let $A_2 = \langle a, b \mid aba = a^2 = a, \ bab = b, \ b^2 = 0 \rangle$. The semigroup A_2 consists of 5 elements and can be thought of the semigroup formed by the following 2×2-matrices:

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}.$$

The semigroup A_2 is finitely based (Trahtman, 1981) while its direct product with any non-trivial finite group is non-finitely based (\sim, 1989).
It is known that the property of being finitely based is extremely fragile: the class of finite finitely based semigroup is not closed under any of standard class operators.

For instance, the direct product of two finitely based finite semigroups can be non-finitely based. An old example: Let $A_2 = \langle a, b \mid aba = a^2 = a, \ bab = b, \ b^2 = 0 \rangle$. The semigroup A_2 consists of 5 elements and can be thought of the semigroup formed by the following 2×2-matrices:

$$
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 0 \\
1 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix}.
$$

The semigroup A_2 is finitely based (Trahtman, 1981) while its direct product with any non-trivial finite group is non-finitely based (∼, 1989).
It is known that the property of being finitely based is extremely
dragile: the class of finite finitely based semigroup is not closed
under any of standard class operators.

For instance, the direct product of two finitely based finite
semigroups can be non-finitely based. An old example: Let
$A_2 = \langle a, b \mid aba = a^2 = a, \ bab = b, \ b^2 = 0 \rangle$. The semigroup A_2
consists of 5 elements and can be thought of the semigroup formed
by the following 2×2-matrices:

\[
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 0 \\
1 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix}.
\]

The semigroup A_2 is finitely based (Trahtman, 1981)
while its direct product with any non-trivial finite group is
non-finitely based (\sim, 1989).
It is known that the property of being finitely based is extremely fragile: the class of finite finitely based semigroup is not closed under any of standard class operators.

For instance, the direct product of two finitely based finite semigroups can be non-finitely based. An old example: Let $A_2 = \langle a, b \mid aba = a^2 = a, \ bab = b, \ b^2 = 0 \rangle$. The semigroup A_2 consists of 5 elements and can be thought of the semigroup formed by the following 2×2-matrices:

\[
\begin{pmatrix}
0 & 0 \\
0 & 0 \\
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 \\
0 & 0 \\
\end{pmatrix}, \quad \begin{pmatrix}
0 & 1 \\
0 & 0 \\
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 \\
1 & 0 \\
\end{pmatrix}, \quad \begin{pmatrix}
0 & 1 \\
0 & 1 \\
\end{pmatrix}.
\]

The semigroup A_2 is finitely based (Trahtman, 1981) while its direct product with any non-trivial finite group is non-finitely based (\sim, 1989).
It is known that the property of being finitely based is extremely fragile: the class of finite finitely based semigroup is not closed under any of standard class operators.

For instance, the direct product of two finitely based finite semigroups can be non-finitely based. An old example: Let $A_2 = \langle a, b \mid aba = a^2 = a, \ bab = b, \ b^2 = 0 \rangle$. The semigroup A_2 consists of 5 elements and can be thought of the semigroup formed by the following 2×2-matrices:

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. $$

The semigroup A_2 is finitely based (Trahtman, 1981) while its direct product with any non-trivial finite group is non-finitely based (∼, 1989).
It is known that the property of being finitely based is extremely fragile: the class of finite finitely based semigroup is not closed under any of standard class operators.

For instance, the direct product of two finitely based finite semigroups can be non-finitely based. An old example: Let
\[A_2 = \langle a, b \mid aba = a^2 = a, \ bab = b, \ b^2 = 0 \rangle. \]
The semigroup \(A_2 \) consists of 5 elements and can be thought of the semigroup formed by the following \(2 \times 2 \)-matrices:

\[
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}.
\]

The semigroup \(A_2 \) is finitely based (Trahtman, 1981) while its direct product with any non-trivial finite group is non-finitely based (\(\sim \), 1989).
It is known that the property of being finitely based is extremely fragile: the class of finite finitely based semigroup is not closed under any of standard class operators.

For instance, the direct product of two finitely based finite semigroups can be non-finitely based. An old example: Let $A_2 = \langle a, b \mid aba = a^2 = a, \ bab = b, \ b^2 = 0 \rangle$. The semigroup A_2 consists of 5 elements and can be thought of the semigroup formed by the following 2×2-matrices:

$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}.
$$

The semigroup A_2 is finitely based (Trahtman, 1981) while its direct product with any non-trivial finite group is non-finitely based (\sim, 1989).
One can try to use examples like this in order to attack Tarski’s Problem for semigroups. Does the class FBA_2 of finite semigroups S such that $A_2 \times S$ is finitely based have decidable membership? A negative answer to this question would imply a negative solution to Tarski’s Problem for semigroups. This is probably too much to hope. But if one proves that the membership problem for FBA_2 is hard (say, NP-hard), one can deduce that so is Tarski’s Problem.
One can try to use examples like this in order to attack Tarski’s Problem for semigroups.
Does the class FBA_2 of finite semigroups S such that $A_2 \times S$ is finitely based have decidable membership?
A negative answer to this question would imply a negative solution to Tarski’s Problem for semigroups.
This is probably too much to hope. But if one proves that the membership problem for FBA_2 is hard (say, NP-hard), one can deduce that so is Tarski’s Problem.
One can try to use examples like this in order to attack Tarski’s Problem for semigroups. Does the class FBA_2 of finite semigroups S such that $A_2 \times S$ is finitely based have decidable membership? A negative answer to this question would imply a negative solution to Tarski’s Problem for semigroups.

This is probably too much to hope. But if one proves that the membership problem for FBA_2 is hard (say, NP-hard), one can deduce that so is Tarski’s Problem.
One can try to use examples like this in order to attack Tarski’s Problem for semigroups. Does the class FBA_2 of finite semigroups S such that $A_2 \times S$ is finitely based have decidable membership? A negative answer to this question would imply a negative solution to Tarski’s Problem for semigroups. This is probably too much to hope. But if one proves that the membership problem for FBA_2 is hard (say, NP-hard), one can deduce that so is Tarski’s Problem.
Our Result

We have described semigroups in FBA_2 which have central idempotents.

Recall that an element e of a semigroup S is called an idempotent if $e^2 = e$ and is said to be central if $es = se$ for all $s \in S$.
We have described semigroups in FBA_2 which have central idempotents. Recall that an element e of a semigroup S is called an idempotent if $e^2 = e$ and is said to be central if $es = se$ for all $s \in S$.

Mikhail Volkov et al
Non-finitely based finite semigroups
We have described semigroups in FBA_2 which have central idempotents.
Recall that an element e of a semigroup S is called an idempotent if $e^2 = e$ and is said to be central if $es = se$ for all $s \in S$.

Theorem (Chen, Hu, Luo, ∼, 2016)

A finite semigroup S with central idempotents is such that the direct product $A_2 \times S$ is finitely based if and only if S equationally equivalent to a direct product of a finite nilpotent semigroup with a semilattice.
A semiring is an algebra of the form \((S, +, \cdot)\) such that
- both \((S, +)\) and \((S, \cdot)\) are semigroups, and
- multiplication distributes over addition.

A very important special case is the one of additively idempotent semirings (ai-semirings for short) in which the laws \(a + a = a\) and \(a + b = b + a\) hold.
A **semiring** is an algebra of the form \((S, +, \cdot)\) such that
- both \((S, +)\) and \((S, \cdot)\) are semigroups, and
- multiplication distributes over addition.

A very important special case is the one of **additively idempotent** semirings (ai-semirings for short) in which the laws \(a + a = a\) and \(a + b = b + a\) hold.

- **Boolean semiring** \(\{0, 1\}\);
- **Power semirings** of semigroups;
- **Semirings** of languages;
- **Tropical (max-plus)** semirings;
- “Everything is a semiring” (Ivan Chaida, in today’s talk).
A **semiring** is an algebra of the form \((S, +, \cdot)\) such that
- both \((S, +)\) and \((S, \cdot)\) are semigroups, and
- multiplication distributes over addition.

A very important special case is the one of **additively idempotent semirings** (ai-semirings for short) in which the laws \(a + a = a\) and \(a + b = b + a\) hold.

- **Boolean semiring** \(\{0, 1\}\);
- **Power semirings** of semigroups;
- **Semirings of languages**;
- **Tropical (max-plus) semirings**;
- “Everything is a semiring” (Ivan Chaida, in today’s talk).
A semiring is an algebra of the form \((S, +, \cdot)\) such that
- both \((S, +)\) and \((S, \cdot)\) are semigroups, and
- multiplication distributes over addition.

A very important special case is the one of additively idempotent semirings (ai-semirings for short) in which the laws \(a + a = a\) and \(a + b = b + a\) hold.

- Boolean semiring \(\{0, 1\}\);
- Power semirings of semigroups;
- Semirings of languages;
- Tropical (max-plus) semirings;
- “Everything is a semiring” (Ivan Chaida, in today’s talk).
A **semiring** is an algebra of the form \((S, +, \cdot)\) such that
- both \((S, +)\) and \((S, \cdot)\) are semigroups, and
- multiplication distributes over addition.

A very important special case is the one of **additively idempotent** semirings (ai-semirings for short) in which the laws \(a + a = a\) and \(a + b = b + a\) hold.

- **Boolean semiring** \(\{0, 1\}\);
- **Power semirings** of semigroups;
- **Semirings of languages**;
- **Tropical** (max-plus) semirings;
- “Everything is a semiring” (Ivan Chaida, in today’s talk).
A semiring is an algebra of the form \((S, +, \cdot)\) such that
- both \((S, +)\) and \((S, \cdot)\) are semigroups, and
- multiplication distributes over addition.
A very important special case is the one of additively idempotent semirings (ai-semirings for short) in which the laws \(a + a = a\) and \(a + b = b + a\) hold.

- Boolean semiring \(\{0, 1\}\);
- Power semirings of semigroups;
- Semirings of languages;
- Tropical (max-plus) semirings;
- “Everything is a semiring” (Ivan Chaida, in today’s talk).
Miaomiao Ren, Xianzhong Zhao, Aifa Wang (On the varieties of ai-semirings satisfying $x^3 \simeq x$, submitted) have shown that these varieties form a distributive lattice of order 179. All of them are finitely based and finitely generated.

Question: What about varieties of ai-semirings satisfying $x^4 \simeq x$? $x^5 \simeq x$? ...
Miaomiao Ren, Xianzhong Zhao, Aifa Wang (On the varieties of ai-semirings satisfying $x^3 \cong x$, submitted) have shown that these varieties form a distributive lattice of order 179. All of them are finitely based and finitely generated.

Question: What about varieties of ai-semirings satisfying $x^4 \cong x$? $x^5 \cong x$? . . .
Miaomiao Ren, Xianzhong Zhao, Aifa Wang (On the varieties of ai-semirings satisfying $x^3 \preceq x$, submitted) have shown that these varieties form a distributive lattice of order 179. All of them are finitely based and finitely generated.

Question: What about varieties of ai-semirings satisfying $x^4 \preceq x$? $x^5 \preceq x$? …

Theorem (Ren, \sim, 2016)

- There is a 28-element ai-semiring satisfying $x^4 \preceq x$ which is non-finitely based.
- There is a 9-element ai-semiring satisfying $x^5 \preceq x$ which is non-finitely based.
The proof relies on the properties of flat extensions of groups. If G is a group, its flat extension G^\flat is the ai-semiring on the set $G \cup \{0\}$ (where 0 is a new symbol) with the addition defined by $g + g = g$ for every $g \in G \cup \{0\}$ and $g + h = 0$ for all different $g, h \in G \cup \{0\}$.

The multiplication in G^\flat extends the multiplication in G and satisfies $g0 = 0g = 0$ for every $g \in G \cup \{0\}$.

Key observation: If G has no finite basis of quasiidentities, then G^\flat has no finite identity basis.

This is a special case of a deep general result by Marcel Jackson (Flat algebras and the translation of universal Horn logic to equational logic, J. Symbolic Logic, 73, no.1 (2008) 90–128).
The proof relies on the properties of flat extensions of groups. If G is a group, its flat extension G^b is the ai-semiring on the set $G \cup \{0\}$ (where 0 is a new symbol) with the addition defined by $g + g = g$ for every $g \in G \cup \{0\}$ and $g + h = 0$ for all different $g, h \in G \cup \{0\}$. The multiplication in G^b extends the multiplication in G and satisfies $g0 = 0g = 0$ for every $g \in G \cup \{0\}$.

Key observation: If G has no finite basis of quasiidentities, then G^b has no finite identity basis.

This is a special case of a deep general result by Marcel Jackson (Flat algebras and the translation of universal Horn logic to equational logic, J. Symbolic Logic, 73, no.1 (2008) 90–128).
The proof relies on the properties of flat extensions of groups. If G is a group, its flat extension G^\flat is the ai-semiring on the set $G \cup \{0\}$ (where 0 is a new symbol) with the addition defined by $g + g = g$ for every $g \in G \cup \{0\}$ and $g + h = 0$ for all different $g, h \in G \cup \{0\}$.

The multiplication in G^\flat extends the multiplication in G and satisfies $g0 = 0g = 0$ for every $g \in G \cup \{0\}$.

Key observation: If G has no finite basis of quasiidentities, then G^\flat has no finite identity basis.

This is a special case of a deep general result by Marcel Jackson (Flat algebras and the translation of universal Horn logic to equational logic, J. Symbolic Logic, 73, no.1 (2008) 90–128).
The proof relies on the properties of flat extensions of groups. If G is a group, its flat extension G^\flat is the ai-semiring on the set $G \cup \{0\}$ (where 0 is a new symbol) with the addition defined by $g + g = g$ for every $g \in G \cup \{0\}$ and $g + h = 0$ for all different $g, h \in G \cup \{0\}$.

The multiplication in G^\flat extends the multiplication in G and satisfies $g0 = 0g = 0$ for every $g \in G \cup \{0\}$.

Key observation: If G has no finite basis of quasiidentities, then G^\flat has no finite identity basis.

This is a special case of a deep general result by Marcel Jackson (Flat algebras and the translation of universal Horn logic to equational logic, J. Symbolic Logic, 73, no.1 (2008) 90–128).
The proof relies on the properties of flat extensions of groups. If G is a group, its flat extension G^\flat is the ai-semiring on the set $G \cup \{0\}$ (where 0 is a new symbol) with the addition defined by $g + g = g$ for every $g \in G \cup \{0\}$ and $g + h = 0$ for all different $g, h \in G \cup \{0\}$.

The multiplication in G^\flat extends the multiplication in G and satisfies $g0 = 0g = 0$ for every $g \in G \cup \{0\}$.

Key observation: If G has no finite basis of quasiidentities, then G^\flat has no finite identity basis.

This is a special case of a deep general result by Marcel Jackson (Flat algebras and the translation of universal Horn logic to equational logic, J. Symbolic Logic, 73, no.1 (2008) 90–128).