Axiomatization of if-then-else over C-algebras

Gayatri Panicker, K. V. Krishna and Purandar Bhaduri

IIT Guwahati

February 11, 2017
if-then-else

if A then f else g
if-then-else

1. McCarthy (1963)
2. Igarashi (1971)
3. Sethi (1978)
5. Pigozzi (1991)
Definition

Let \(\langle B, \lor, \land, \neg, T, F \rangle \) be a Boolean algebra. Let \(S \) be a set. A **B-set** is defined to be a pair \((S, B)\), such that there is a **B-action** \(B \times S \times S \to S \), denoted by \(\alpha[a, b] \), satisfying for all \(\alpha, \beta \in B \) and \(a, b, c \in S \),
Definition
Let \(\langle B, \lor, \land, \neg, T, F \rangle \) be a Boolean algebra. Let \(S \) be a set. A \textit{B-set} is defined to be a pair \((S, B)\), such that there is a \textit{B-action} \(B \times S \times S \to S \), denoted by \(\alpha[a, b] \), satisfying for all \(\alpha, \beta \in B \) and \(a, b, c \in S \),

\[
\begin{align*}
\alpha[a, a] &= a \\
\alpha[\alpha[a, b], c] &= \alpha[a, c] \\
\alpha[a, \alpha[b, c]] &= \alpha[a, c] \\
F[a, b] &= b \\
\neg\alpha[a, b] &= \alpha[b, a] \\
(\alpha \land \beta)[a, b] &= \alpha[\beta[a, b], b]
\end{align*}
\]
Example

$(S, 2)$ is always a B-set, for any set S. Such a pair will be called a basic B-set.

\[
T[a, b] = a; \\
F[a, b] = b.
\]
Example: $(T(X), 2^X)$ is a B-set where $T(X)$ denotes the set of all total functions over X.

Theorem ([2]): Every B-set is a subdirect product of basic B-sets.
Example

\((T(X), 2^X)\) is a \(B\)-set where \(T(X)\) denotes the set of all total functions over \(X\).

\[
\alpha [g, h](x) = \begin{cases}
 g(x), & \text{if } x \in \alpha; \\
 h(x), & \text{otherwise.}
\end{cases}
\]
Example

\((T(X), 2^X)\) is a \(B\)-set where \(T(X)\) denotes the set of all total functions over \(X\).

\[
\alpha[g, h](x) = \begin{cases}
g(x), & \text{if } x \in \alpha;
\h(x), & \text{otherwise.}
\end{cases}
\]

Theorem ([2])

Every \(B\)-set is a subdirect product of basic \(B\)-sets.
Agreeable B-sets

Definition

A B-set (S, B) equipped with an operation \ast:

\[S \times S \rightarrow B \]

is said to be agreeable if it satisfies the following axioms for all $s, t, u, v \in S$ and $\alpha \in B$:

1. \(s \ast s = T \) \hspace{1cm} (7)
2. \((s \ast t)[s, t] = t \) \hspace{1cm} (8)
3. \(\alpha[s, t] \ast \alpha[u, v] = \alpha[s \ast u, t \ast v] \) \hspace{1cm} (9)
Agreeable B-sets

Definition
A B-set (S, B) equipped with an operation $*: S \times S \rightarrow B$ is said to be agreeable if it satisfies the following axioms for all $s, t, u, v \in S$ and $\alpha \in B$:

$$s \ast s = T$$ \hspace{1cm} (7)

$$\alpha[s, t] \ast \alpha[u, v] = \alpha[s \ast u, t \ast v]$$ \hspace{1cm} (9)
Let S be any set. The pair $(S, 2)$ is an agreeable B-set.

$$s \ast t = \begin{cases} T, & \text{if } s = t; \\ F, & \text{otherwise}. \end{cases}$$

These B-sets are called basic agreeable B-sets.

Theorem ([2])

Every agreeable B-set is a subdirect product of basic agreeable B-sets.
Example

Let S be any set. The pair $(S, 2)$ is an agreeable B-set.

$$ s \ast t = \begin{cases} T, & \text{if } s = t; \\ F, & \text{otherwise.} \end{cases} $$

These B-sets are called *basic agreeable B-sets*.
Example

Let S be any set. The pair $(S, 2)$ is an agreeable B-set.

$$s \ast t = \begin{cases}
T, & \text{if } s = t; \\
F, & \text{otherwise.}
\end{cases}$$

These B-sets are called *basic agreeable B-sets*.

Theorem ([2])

Every agreeable B-set is a subdirect product of basic agreeable B-sets.
The algebra of conditional logic
The algebra of conditional logic

Definition

A *C-algebra* is an algebra \(\langle M, \lor, \land, \neg \rangle \) of type \((2, 2, 1)\), which satisfies the following axioms for all \(\alpha, \beta, \gamma \in M \):

\[
\neg \neg \alpha = \alpha \quad (10)
\]
\[
\neg (\alpha \land \beta) = \neg \alpha \lor \neg \beta \quad (11)
\]
\[
(\alpha \land \beta) \land \gamma = \alpha \land (\beta \land \gamma) \quad (12)
\]
\[
\alpha \land (\beta \lor \gamma) = (\alpha \land \beta) \lor (\alpha \land \gamma) \quad (13)
\]
\[
(\alpha \lor \beta) \land \gamma = (\alpha \land \gamma) \lor (\neg \alpha \land \beta \land \gamma) \quad (14)
\]
\[
\alpha \lor (\alpha \land \beta) = \alpha \quad (15)
\]
\[
(\alpha \land \beta) \lor (\beta \land \alpha) = (\beta \land \alpha) \lor (\alpha \land \beta) \quad (16)
\]
Example

Any Boolean algebra, B is a C-algebra, by definition. In particular, the two-element Boolean algebra, 2 is a C-algebra.

Example

The following is an example of a three-element C-algebra, $3 = \{ T, F, U \}$.

<table>
<thead>
<tr>
<th>\neg</th>
<th>\land</th>
<th>T</th>
<th>F</th>
<th>U</th>
<th>\lor</th>
<th>T</th>
<th>F</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>U</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>
Example

Any Boolean algebra, B is a C-algebra, by definition. In particular, the two-element Boolean algebra, 2 is a C-algebra.

Example

The following is an example of a three-element C-algebra, $3 = \{ T, F, U \}$.

<table>
<thead>
<tr>
<th>\neg</th>
<th>\land</th>
<th>T</th>
<th>F</th>
<th>U</th>
<th>\lor</th>
<th>T</th>
<th>F</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>U</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

We will say that a C-algebra M has T, F, U if it has an identity for \land, an identity for \lor and a fixed point for \neg.
The algebra of disjoint alternatives
The algebra of disjoint alternatives

Definition
An ada is a C-algebra M equipped with an additional unary operation $(\)\downarrow$ subject to the following equations for all $\alpha, \beta \in M$:

$$F\downarrow = F \quad (17)$$
$$U\downarrow = F \quad (18)$$
$$T\downarrow = T \quad (19)$$
$$\alpha \wedge \beta\downarrow = \alpha \wedge (\alpha \wedge \beta)\downarrow \quad (20)$$
$$\alpha\downarrow \lor \neg(\alpha\downarrow) = T \quad (21)$$
$$\alpha = \alpha\downarrow \lor \alpha \quad (22)$$
Example

The three element C-algebra 3 with the unary operation $(\)\downarrow$ defined as follows forms an ada. This ada will hereafter be denoted by 3.

\[T\downarrow = T \]
\[U\downarrow = F = F\downarrow \]
Example

The three element C-algebra 3 with the unary operation $(\)^\downarrow$ defined as follows forms an ada. This ada will hereafter be denoted by 3.

\[
T^\downarrow = T
\]
\[
U^\downarrow = F = F^\downarrow
\]

- Every ada is a subalgebra of a product of copies of 3. ([4]).
Example

The three element C-algebra 3 with the unary operation ()↓ defined as follows forms an ada. This ada will hereafter be denoted by 3.

\[T^{\downarrow} = T \]
\[U^{\downarrow} = F = F^{\downarrow} \]

- Every ada is a subalgebra of a product of copies of 3. ([4]).
- Also \(3^X \) is an ada with operations defined pointwise.
Example

The three element C-algebra 3 with the unary operation $()\downarrow$ defined as follows forms an ada. This ada will hereafter be denoted by 3.

\[T\downarrow = T \]
\[U\downarrow = F = F\downarrow \]

- Every ada is a subalgebra of a product of copies of 3. ([4]).
- Also 3^X is an ada with operations defined pointwise.
- Moreover 3 is simple.
Definition

C-sets

Let X be a set and $\bot \not\in X$. The pointed set $X \cup \{\bot\}$ with base point \bot is denoted by X_\bot. The set of all total functions over X_\bot which fix \bot is denoted by $T_0(X_\bot)$, i.e. $T_0(X_\bot) = \{f \in T(X_\bot) : f(\bot) = \bot\}$.

Let S_\bot be a pointed set with base point \bot and M be a C-algebra with T, F, U. The pair (S_\bot, M) equipped with an action $\lbrack , \rbrack : M \times S_\bot \times S_\bot \to S_\bot$ is called a C-set if it satisfies the following axioms for all $\alpha, \beta \in M$ and $s, t, u, v \in S_\bot$: AAA93: Axiomatization of if-then-else over C-algebras
C-sets

Notation

Let X be a set and $\bot \notin X$. The pointed set $X \cup \{\bot\}$ with base point \bot is denoted by X_\bot. The set of all total functions over X_\bot which fix \bot is denoted by $T_o(X_\bot)$, i.e. $T_o(X_\bot) = \{f \in T(X_\bot) : f(\bot) = \bot\}$.
C-sets

Notation

Let X be a set and $\bot \notin X$. The pointed set $X \cup \{\bot\}$ with base point \bot is denoted by X_\bot. The set of all total functions over X_\bot which fix \bot is denoted by $T_o(X_\bot)$, i.e.

$$T_o(X_\bot) = \{ f \in T(X_\bot) : f(\bot) = \bot \}.$$

Definition

Let S_\bot be a pointed set with base point \bot and M be a C-algebra with T, F, U. The pair (S_\bot, M) equipped with an action

$$[-, -] : M \times S_\bot \times S_\bot \to S_\bot$$

is called a C-set if it satisfies the following axioms for all $\alpha, \beta \in M$ and $s, t, u, v \in S_\bot$:
References

AAA93: Axiomatization of if-then-else over C-algebras
Definition

\[U[s, t] = \bot \] \hspace{1cm} (23)
\[F[s, t] = t \] \hspace{1cm} (24)
\[(\neg \alpha)[s, t] = \alpha[t, s] \] \hspace{1cm} (25)
\[\alpha[\alpha[s, t], u] = \alpha[s, u] \] \hspace{1cm} (26)
\[\alpha[s, \alpha[t, u]] = \alpha[s, u] \] \hspace{1cm} (27)
\[(\alpha \land \beta)[s, t] = \alpha[\beta[s, t], t] \] \hspace{1cm} (28)
\[\alpha[\beta[s, t], \beta[u, v]] = \beta[\alpha[s, u], \alpha[t, v]] \] \hspace{1cm} (29)
\[\alpha[s, t] = \alpha[t, t] \Rightarrow (\alpha \land \beta)[s, t] = (\alpha \land \beta)[t, t] \] \hspace{1cm} (30)
Example

Let S_{\perp} be a pointed set with base point \perp. The pair $(S_{\perp}, 3)$ is a C-set with respect to the following action for all $a, b \in S_{\perp}$ and $\alpha \in 3$:

$$\alpha \left[a, b \right] = \begin{cases} a, & \text{if } \alpha = T; \\ b, & \text{if } \alpha = F; \\ \perp, & \text{if } \alpha = U. \end{cases}$$

These C-sets will be called basic C-sets.

Example

Let M be a C-algebra with T, F, U. By treating M as a pointed set with base point U, the pair (M, M) is a C-set under the following action for all $\alpha, \beta, \gamma \in M$:

$$\alpha \wedge \beta, \gamma = (\alpha \wedge \beta) \vee (\neg \alpha \wedge \gamma).$$
Example

Let S_\bot be a pointed set with base point \bot. The pair $(S_\bot, 3)$ is a C-set with respect to the following action for all $a, b \in S_\bot$ and $\alpha \in 3$:

$$\alpha[a, b] = \begin{cases}
a, & \text{if } \alpha = T;

b, & \text{if } \alpha = F;

\bot, & \text{if } \alpha = U.
\end{cases}$$

These C-sets will be called basic C-sets.
Example

Let S_{\bot} be a pointed set with base point \bot. The pair $(S_{\bot}, 3)$ is a C-set with respect to the following action for all $a, b \in S_{\bot}$ and $\alpha \in 3$:

$$
\alpha[a, b] = \begin{cases}
a, & \text{if } \alpha = T;
b, & \text{if } \alpha = F;
\bot, & \text{if } \alpha = U.
\end{cases}
$$

These C-sets will be called **basic C-sets**.

Example

Let M be a C-algebra with T, F, U. By treating M as a pointed set with base point U, the pair (M, M) is a C-set under the following action for all $\alpha, \beta, \gamma \in M$:

$$
\alpha \llbracket \beta, \gamma \rrbracket = (\alpha \land \beta) \lor (\neg \alpha \land \gamma).
$$
Examples

Consider $T \otimes (X \perp)$ as a pointed set with base point \perp, the constant function taking the value \perp. The pair $(T \otimes (X \perp), 3X)$ is a C-set with the following action. For all $f, g \in T \otimes (X \perp)$ and $\alpha \in 3X$,

$$\alpha[f, g](x) =
\begin{cases}
 f(x), & \text{if } \alpha(x) = T; \\
 g(x), & \text{if } \alpha(x) = F; \\
 \perp, & \text{otherwise}.
\end{cases}$$

(31)
Example

Consider $T_o(X_\bot)$ as a pointed set with base point ζ_\bot, the constant function taking the value \bot. The pair $(T_o(X_\bot), 3^X)$ is a C-set with the following action. For all $f, g \in T_o(X_\bot)$ and $\alpha \in 3^X$,

$$\alpha[f, g](x) = \begin{cases}
 f(x), & \text{if } \alpha(x) = T; \\
 g(x), & \text{if } \alpha(x) = F; \\
 \bot, & \text{otherwise.}
\end{cases}$$

(31)
Example
Consider \(S^X_{\perp} \), the set of all functions from \(X \) to \(S_{\perp} \), as a pointed set with base point \(\zeta_{\perp} \). The pair \((S^X_{\perp}, 3^X) \) is a C-set under the action given in (31).

Example
Consider \(\mathcal{T}(X_{\perp}) \), the set of all total functions on \(X_{\perp} \), as a pointed set with base point \(\zeta_{\perp} \). The pair \((\mathcal{T}(X_{\perp}), 3^X) \) is a C-set under the action given in (31), where \(f, g \in \mathcal{T}(X_{\perp}) \) and \(\alpha \in 3^X \).
C-set properties

(i) \(\alpha[\bot, \bot] = \bot \).

(ii) If \(\alpha[s, u] = \alpha[r, r] \) for some \(u \in S_\bot \) then \(\alpha[s, r] = \alpha[r, r] \).

(iii) If \(\alpha[s, u] = \alpha[t, u] \) for some \(u \in S_\bot \) then \(\alpha[s, v] = \alpha[t, v] \) for all \(v \in S_\bot \).

(iv) If \(\alpha[s, t] = \alpha[t, t] \) then \((\beta \land \alpha)[s, t] = (\beta \land \alpha)[t, t] \).

(v) For each \(\alpha \in M_\# \) and \(s \in S_\bot \), we have \(\alpha[s, s] = s \).

Corollary

The pair \((S_\bot, M_\#)\) is a \(B \)-set.
C-set properties

Proposition

The following statements hold for all $\alpha, \beta \in M$ and $s, t, r \in S_{\bot}$.

(i) $\alpha[\bot, \bot] = \bot$.

(ii) If $\alpha[s, u] = \alpha[r, r]$ for some $u \in S_{\bot}$ then $\alpha[s, r] = \alpha[r, r]$.

(iii) If $\alpha[s, u] = \alpha[t, u]$ for some $u \in S_{\bot}$ then $\alpha[s, v] = \alpha[t, v]$ for all $v \in S_{\bot}$.

(iv) If $\alpha[s, t] = \alpha[t, t]$ then $(\beta \land \alpha)[s, t] = (\beta \land \alpha)[t, t]$.

(v) For each $\alpha \in M_{\#}$ and $s \in S_{\bot}$, we have $\alpha[s, s] = s$.

C-set properties

Proposition

The following statements hold for all $\alpha, \beta \in M$ and $s, t, r \in S\bot$.

(i) $\alpha[\bot, \bot] = \bot$.

(ii) If $\alpha[s, u] = \alpha[r, r]$ for some $u \in S\bot$ then $\alpha[s, r] = \alpha[r, r]$.

(iii) If $\alpha[s, u] = \alpha[t, u]$ for some $u \in S\bot$ then $\alpha[s, v] = \alpha[t, v]$ for all $v \in S\bot$.

(iv) If $\alpha[s, t] = \alpha[t, t]$ then $(\beta \land \alpha)[s, t] = (\beta \land \alpha)[t, t]$.

(v) For each $\alpha \in M\#_\#$ and $s \in S\bot$, we have $\alpha[s, s] = s$.

Corollary

The pair $(S\bot, M\#_\#)$ is a B-set.
Representation of a subclass of C-sets
Representation of a subclass of C-sets

Definition

A *congruence* on a C-set is a pair (σ, τ), where σ is an equivalence relation on S_\bot and τ is a congruence on the ada M such that

$$(s, t), (u, v) \in \sigma, (\alpha, \beta) \in \tau \Rightarrow (\alpha[s, u], \beta[t, v]) \in \sigma.$$
Representation of a subclass of C-sets

Definition

A *congruence* on a C-set is a pair (σ, τ), where σ is an equivalence relation on S_{\perp} and τ is a congruence on the ada M such that

$$(s, t), (u, v) \in \sigma, (\alpha, \beta) \in \tau \Rightarrow (\alpha[s, u], \beta[t, v]) \in \sigma.$$

Definition

For each maximal congruence θ on M, we define a relation on S_{\perp} by

$$E_\theta = \{(s, t) \in S_{\perp} \times S_{\perp} : \beta[s, t] = \beta[t, t] \text{ for some } \beta \in \overline{T}_\theta\}.$$
Lemma
The relation E_{θ} is an equivalence on S_{\perp}.

Proposition
For any $\alpha \in M$, $\beta = \neg (\alpha \downarrow \lor (\neg \alpha \downarrow)) \lor U$ satisfies $\beta \land \alpha = U$.

Moreover, if $(\alpha, U) \in \theta$ then $(\beta, T) \in \theta$.

Proposition
For each $\alpha \in M$ and each $s, t \in S_{\perp}$, we have the following:

(i) $(\alpha, T) \in \theta \Rightarrow (\alpha \downarrow s, t) \in E_{\theta}$.

(ii) $(\alpha, F) \in \theta \Rightarrow (\alpha \downarrow s, t) \in E_{\theta}$.

(iii) $(\alpha, U) \in \theta \Rightarrow (\alpha \downarrow s, t) \in E_{\theta}$.
Lemma

The relation E_{θ} is an equivalence on S_{\perp}.
Lemma

The relation E_θ is an equivalence on S_\bot.

Proposition

For any $\alpha \in M$, $\beta = \neg(\alpha^\bot \lor (\neg\alpha)^\bot) \lor U$ satisfies $\beta \land \alpha = U$. Moreover, if $(\alpha, U) \in \theta$ then $(\beta, T) \in \theta$.

AAA93: Axiomatization of if-then-else over C-algebras

IIT Guwahati
Lemma

The relation E_θ is an equivalence on S_\bot.

Proposition

For any $\alpha \in M$, $\beta = \neg(\alpha \downarrow \lor (\neg\alpha) \downarrow) \lor U$ satisfies $\beta \land \alpha = U$. Moreover, if $(\alpha, U) \in \theta$ then $(\beta, T) \in \theta$.

Proposition

For each $\alpha \in M$ and each $s, t \in S_\bot$, we have the following:

(i) $(\alpha, T) \in \theta \Rightarrow (\alpha[s, t], s) \in E_\theta$.

(ii) $(\alpha, F) \in \theta \Rightarrow (\alpha[s, t], t) \in E_\theta$.

(iii) $(\alpha, U) \in \theta \Rightarrow (\alpha[s, t], \bot) \in E_\theta$.
Lemma
The pair \((E, \theta)\) is a \(C\)-set congruence.

Remark
Note that, as \(\theta\) is a maximal congruence on \(\text{ada} M\), \(M/\theta\) must be simple, i.e., \(M/\theta \cong \{3\}\). Further, the quotient set \(S/\theta\) can be treated as a pointed set with base point \(\bot\). Thus \((S/\theta, M/\theta)\) is a basic \(C\)-set under the action \(\alpha/\theta\) where

\[
\begin{cases}
 s/\theta, & \text{if } \alpha/\theta \in T/\theta; \\
 t/\theta, & \text{if } \alpha/\theta \in F/\theta; \\
 \bot/\theta, & \text{if } \alpha/\theta \in U/\theta.
\end{cases}
\]
Lemma

The pair \((E_\theta, \theta)\) is a C-set congruence.
Lemma

The pair \((E_\theta, \theta)\) is a C-set congruence.

Remark

Note that, as \(\theta\) is a maximal congruence on \(\text{ada } M\), \(M/\theta\) must be simple, i.e., \(M/\theta \cong 3\). Further, the quotient set \(S_\bot/E_\theta\) can be treated as a pointed set with base point \(\bot\). Thus \((S_\bot/E_\theta, M/\theta)\) is a basic C-set under the action

\[
\overline{\alpha}^\theta [\overline{s}^{E_\theta}, \overline{t}^{E_\theta}] = \begin{cases}
\overline{s}^{E_\theta}, & \text{if } \alpha \in \overline{T}^\theta; \\
\overline{t}^{E_\theta}, & \text{if } \alpha \in \overline{F}^\theta; \\
\bot^{E_\theta}, & \text{if } \alpha \in \overline{U}^\theta.
\end{cases}
\]
Lemma

In case of the C-set (M, M), the equivalence E_θ on M, denoted by E_{θ_M}, is a subset of θ.
Lemma

In case of the C-set \((M, M)\), the equivalence \(E_\theta\) on \(M\), denoted by \(E_{\theta M}\), is a subset of \(\theta\).

Lemma

\[\bigcap_\theta E_\theta = \Delta_{S_{\perp}}, \] where \(\theta\) ranges over all maximal congruences on \(M\).
Lemma

In case of the C-set \((M, M)\), the equivalence \(E_\theta\) on \(M\), denoted by \(E_{\theta_M}\), is a subset of \(\theta\).

Lemma

\[\bigcap \theta E_\theta = \Delta_{S_\perp} \], where \(\theta\) ranges over all maximal congruences on \(M\).

Remark

For \(\alpha, \beta \in M\) with \(\alpha \neq \beta\), let \(\theta_{\alpha, \beta}\) be a maximal congruence which separates \(\alpha\) and \(\beta\). Since \(\bigcap_{\alpha \neq \beta \in M} \theta_{\alpha, \beta} = \Delta_M\), the intersection of all maximal congruences on \(M\)

\[\bigcap_{\theta \text{ maximal}} \theta = \Delta_M \]
<table>
<thead>
<tr>
<th>Background</th>
<th>C-sets</th>
<th>Agreeable C-sets</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theorem

Every C-set \((S \perp, M)\), where \(M\) is an ada, is a subdirect product of basic C-sets.

Corollary

An identity (quasi-identity) is satisfied in every C-set \((S \perp, M)\) where \(M\) is an ada if and only if it is satisfied in all basic C-sets.

AAA93: Axiomatization of if-then-else over C-algebras

IIT Guwahati
Theorem

\textit{Every }C\text{-set} \,(S_\perp, M), \text{ where } M \text{ is an ada, is a subdirect product of basic } C\text{-sets.} \)
Theorem

Every C-set \((S_\perp, M)\), where \(M\) is an ada, is a subdirect product of basic C-sets.

Corollary

An identity (quasi-identity) is satisfied in every C-set \((S_\perp, M)\) where \(M\) is an ada if and only if it is satisfied in all basic C-sets.
Agreeable C-sets
Agreeable C-sets

Boolean case:

$$(f \ast g)(x) = \begin{cases} T, & \text{if } f(x) = g(x); \\ F, & \text{otherwise.} \end{cases}$$
Agreeable C-sets

Boolean case:

$$(f \ast g)(x) = \begin{cases} T, & \text{if } f(x) = g(x); \\ F, & \text{otherwise.} \end{cases}$$

If $f, g \in \mathcal{T}_o(X_\bot)$ then

$$(f \ast g)(x) = \begin{cases} T, & \text{if } f(x) = g(x) \text{ and } f(x) \neq \bot \neq g(x); \\ F, & \text{if } f(x) \neq g(x) \text{ and } f(x) \neq \bot \neq g(x); \\ U, & \text{otherwise.} \end{cases} \quad (32)$$
Definition

A C-set \((S_\bot, M)\) equipped with a function

\[* : S_\bot \times S_\bot \rightarrow M \]

is said to be *agreeable* if it satisfies the following axioms for all \(s, t, u, v \in S_\bot\) and \(\alpha \in M\):

\[(s * s)[s, \bot] = s \] \hspace{1cm} (33)

\[\bot * s = U = s * \bot \] \hspace{1cm} (34)

\[(s * t)[s, t] = (s * t)[t, t] \] \hspace{1cm} (35)

\[\alpha[s, t] * \alpha[u, v] = \alpha[s * u, t * v] \] \hspace{1cm} (36)

\[((s * s = T) \land (s * t = U)) \Rightarrow t = \bot \] \hspace{1cm} (37)
Every basic C-set is agreeable under the operation given by

$$s \ast t = \begin{cases}
T, & \text{if } s = t (\neq \bot); \\
F, & \text{if } s \neq t (\neq \bot); \\
U, & \text{if } s = \bot \text{ or } t = \bot.
\end{cases}$$

(38)
Example

Every basic C-set is agreeable under the operation given by

$$s \star t = \begin{cases}
T, & \text{if } s = t (\neq \bot); \\
F, & \text{if } s \neq t (\neq \bot); \\
U, & \text{if } s = \bot \text{ or } t = \bot.
\end{cases} \tag{38}$$
Example
Every basic C-set is agreeable under the operation given by

\[s \ast t = \begin{cases}
T, & \text{if } s = t \ (\neq \bot); \\
F, & \text{if } s \neq t \ (\neq \bot); \\
U, & \text{if } s = \bot \text{ or } t = \bot.
\]

(38)

Proposition
The operation defined in (38) is the only possible operation under which a basic C-set can be made agreeable.
Example

The pair \((T_0(X⊥), 3X)\) is an agreeable \(C\)-set under the operation \(∗\) defined in (32).

Example

The \(C\)-set \((M, M)\) is agreeable under the operation \(\alpha ∗ β = (\alpha ∧ β) ∨ (\neg \alpha ∧ \neg β)\) which can be equivalently expressed in terms of the if-then-else action as \(\alpha ∗ β = \alpha J β, \neg β K\).
Example

The pair \((\mathcal{T}_o(X_\perp), 3^X)\) is an agreeable C-set under the operation \(*\) defined in (32).
Example

The pair \((\mathcal{T}_o(X_\perp), 3^X)\) is an agreeable C-set under the operation \(*\) defined in (32).

Example

The C-set \((M, M)\) is agreeable under the operation

\[
\alpha * \beta = (\alpha \land \beta) \lor (\neg \alpha \land \neg \beta)
\]

which can be equivalently expressed in terms of the if-then-else action as

\[
\alpha * \beta = \alpha[\beta, \neg \beta].
\]
Representation of a subclass of agreeable C-sets

Theorem
Every agreeable C-set (S,\perp,M) where M is an ada, is a subdirect product of agreeable basic C-sets.

Corollary
An identity (quasi-identity) is satisfied in every agreeable C-set (S,\perp,M) where M is an ada if and only if it is satisfied in all agreeable basic C-sets.

Corollary
In every agreeable C-set, where M is an ada, we have $s^* t = t^* s$.

Proof method gives an alternate mechanism to prove the corresponding agreeable B-set representation theorem in [3].
Representation of a subclass of agreeable C-sets

Theorem

Every agreeable C-set (S_\bot, M) where M is an ada, is a subdirect product of agreeable basic C-sets.
Representation of a subclass of agreeable C-sets

Theorem

Every agreeable C-set (S_\perp, M) where M is an ada, is a subdirect product of agreeable basic C-sets.

Corollary

An identity (quasi-identity) is satisfied in every agreeable C-set (S_\perp, M) where M is an ada if and only if it is satisfied in all agreeable basic C-sets.
Representation of a subclass of agreeable C-sets

Theorem

Every agreeable C-set (S_\perp, M) where M is an ada, is a subdirect product of agreeable basic C-sets.

Corollary

An identity (quasi-identity) is satisfied in every agreeable C-set (S_\perp, M) where M is an ada if and only if it is satisfied in all agreeable basic C-sets.

Corollary

In every agreeable C-set, where M is an ada, we have $s \ast t = t \ast s$.
Representation of a subclass of agreeable C-sets

Theorem

Every agreeable C-set (S_\bot, M) where M is an ada, is a subdirect product of agreeable basic C-sets.

Corollary

An identity (quasi-identity) is satisfied in every agreeable C-set (S_\bot, M) where M is an ada if and only if it is satisfied in all agreeable basic C-sets.

Corollary

In every agreeable C-set, where M is an ada, we have $s \ast t = t \ast s$.

Proof method gives an alternate mechanism to prove the corresponding agreeable B-set representation theorem in [3].
Thank you!
References

References
