Concept Lattices of Relational Structures

Jens Köppers

IT University of Copenhagen

93. Arbeitstagung Allgemeine Algebra
Bern, 10-12 February 2017
Mathematics
Relational Structure

\[
\begin{align*}
|\Delta| &= \{A, B, C, D, E\} \\
\sigma_\Delta &= \{B, C\} \\
\varphi_\Delta &= \{A, D, E\} \\
m_\Delta &= \{(A, B), (A, C)\} \\
f_\Delta &= \{(B, D), (B, E)\} \\
p_\Delta &= \{(A, B), (A, C), (B, D), (B, E)\}
\end{align*}
\]

Intension Graph

Power Context Family

\[
\begin{array}{c|c|c}
\sigma & \varphi \\
\hline
A & \times \\
B & \times \\
C & \\
D & \times \\
E & \times \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
 & m & f & p \\
\hline
(A,B) & \times & \times & \\
(A,C) & \times & \times & \\
(B,D) & \times & \times & \\
(B,E) & \times & \times & \\
\end{array}
\]
Primitive Positive Formulas

\[\exists y_0 \exists y_1 \ p(y_0, y_1) \land p(y_1, x_0) \]

pp-Graph
Every pp-formula $\varphi(x_0, \ldots, x_{k-1})$ defines a k-ary relation φ^Δ.

For every k-ary relation A over Δ, there is a strongest pp-formula A^Δ solved by all tuples in A.

A k-ary concept is a pair (A, φ) with $A^\Delta = \varphi$ and $\varphi^\Delta = A$.
Concept Lattice $\mathcal{B}_1(\Delta)$
family tree – unary concepts
Abstraction Operation: Direct Product of Graphs

\[
G_1 \times G_2 \xrightarrow{\pi_1} X \xrightarrow{\varphi} G_1 \times G_2 \xrightarrow{\pi_2} G_2
\]

\[
X\xrightarrow{\varphi_1} G_1 \quad \quad \quad X\xrightarrow{\varphi_2} G_2
\]
Philosophical Motivation
Starting Point: Modeling Concepts

- Is FCA really about modeling concepts?
- What is a concept?
Starting Point: Modeling Concepts

- Is FCA really about modeling concepts?
- What is a concept?
- How can we model concepts, if concepts don’t exist?
Learning a Concept

by example

by explanation

A sheep is a four-legged animal with wooly fur.
Significance of Primitive Positive Formulas

- Both data and intents are graphs
- Hypothesis: The basic concepts arise from observation (Positivism?)
- Thomas v. Aquin: "Nihil est in intellectu quod non prius fuerit in sensu"
Applications
Data Transformations

- Relational Database
- Object-oriented
- RDF/RDFS
- Power Context Family
- Concept Lattice
Example: Relational DB → PCF

Person

<table>
<thead>
<tr>
<th>name</th>
<th>gender</th>
<th>parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anne</td>
<td>female</td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>male</td>
<td>Anne</td>
</tr>
<tr>
<td>Chris</td>
<td>male</td>
<td>Anne</td>
</tr>
<tr>
<td>Dora</td>
<td>female</td>
<td>Bob</td>
</tr>
<tr>
<td>Emily</td>
<td>female</td>
<td>Bob</td>
</tr>
</tbody>
</table>

Concept

Lattices of Relational Structures

Mathematics

Philosophical Motivation

Applications

References

Example: Relational DB → PCF

\mathbb{K}_1:

<table>
<thead>
<tr>
<th></th>
<th>σ</th>
<th>φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td>B</td>
<td>\times</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>\times</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>\times</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>\times</td>
<td></td>
</tr>
</tbody>
</table>

\mathbb{K}_2:

<table>
<thead>
<tr>
<th></th>
<th>m</th>
<th>f</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A,B)</td>
<td>\times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A,C)</td>
<td>\times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B,D)</td>
<td></td>
<td>\times</td>
<td></td>
</tr>
<tr>
<td>(B,E)</td>
<td></td>
<td>\times</td>
<td></td>
</tr>
</tbody>
</table>
Example: Book Search

Author

<table>
<thead>
<tr>
<th>name</th>
<th>nationality</th>
<th>date of birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis Carroll</td>
<td>British</td>
<td>1832-01-27</td>
</tr>
<tr>
<td>Virginia Woolf</td>
<td>British</td>
<td>1862-05-21</td>
</tr>
<tr>
<td>Douglas Adams</td>
<td>British</td>
<td>1952-03-11</td>
</tr>
<tr>
<td>J. K. Rowling</td>
<td>British</td>
<td>1965-07-31</td>
</tr>
<tr>
<td>Stephen King</td>
<td>American</td>
<td>1947-08-21</td>
</tr>
<tr>
<td>Dan Brown</td>
<td>American</td>
<td>1964-06-22</td>
</tr>
</tbody>
</table>

Book

<table>
<thead>
<tr>
<th>title</th>
<th>author</th>
<th>publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice in Wonderland</td>
<td>Lewis Carroll</td>
<td>1865-11-26</td>
</tr>
<tr>
<td>To the Lighthouse</td>
<td>Virginia Woolf</td>
<td>1927-05-21</td>
</tr>
<tr>
<td>Harry Potter and the Deathly Hallows</td>
<td>J. K. Rowling</td>
<td>2007-07-21</td>
</tr>
<tr>
<td>The Casual Vacancy</td>
<td>J. K. Rowling</td>
<td>2012-09-27</td>
</tr>
<tr>
<td>The Shining</td>
<td>Stephen King</td>
<td>1971-07-01</td>
</tr>
<tr>
<td>Doctor Sleep</td>
<td>Stephen King</td>
<td>2013-09-24</td>
</tr>
<tr>
<td>The Da Vinci Code</td>
<td>Dan Brown</td>
<td>2003-02-01</td>
</tr>
<tr>
<td>Inferno</td>
<td>Dan Brown</td>
<td>2013-03-14</td>
</tr>
</tbody>
</table>

Concept
Lattices of Relational Structures
Mathematics
Philosophical Motivation
Applications
References
Rudolf Wille
Conceptual Graphs and Formal Concept Analysis.

Marianne Huchard, Cyril Roume and Petko Valtchev
When concepts point at other concepts: the case of UML diagram reconstruction.

Franz Baader and Felix Distel
A finite basis for the set of \mathcal{EL}-implications holding in a finite model.

Jens Kötters
Concept lattices of a relational structure.